
ON THE RAPID COMPUTATION OF

VARIOUS POLYLOGARITHMIC CONSTANTS

David Bailey, Peter Borwein1and Simon Plouffe

Abstract.

We give algorithms for the computation of the d-th digit of certain transcendental
numbers in various bases. These algorithms can be easily implemented (multiple
precision arithmetic is not needed), require virtually no memory, and feature run
times that scale nearly linearly with the order of the digit desired. They make
it feasible to compute, for example, the billionth binary digit of log (2) or � on a
modest work station in a few hours run time.

We demonstrate this technique by computing the ten billionth hexadecimal digit of
�, the billionth hexadecimal digits of �2; log(2) and log2(2), and the ten billionth
decimal digit of log(9=10).

These calculations rest on the observation that very special types of identities exist for
certain numbers like �, �2, log(2) and log2(2). These are essentially polylogarithmic
ladders in an integer base. A number of these identities that we derive in this work
appear to be new, for example the critical identity for �:

� =
1X

i=0

1

16i
� 4

8i+ 1
�

2

8i+ 4
�

1

8i+ 5
�

1

8i+ 6

�
:

Ref: Mathematics of Computation, vol. 66, no. 218 (April 1997), pg. 903{913

1Research supported in part by NSERC of Canada.
1991 Mathematics Subject Classi�cation. 11A05 11Y16 68Q25.
Key words and phrases. Computation, digits, log, polylogarithms, SC, �, algorithm.

Typeset by AMS-TEX

1

1. Introduction.

It is widely believed that computing just the d-th digit of a number like � is really
no easier than computing all of the �rst d digits. From a bit complexity point of
view this may well be true, although it is probably very hard to prove. What we will
show is that it is possible to compute just the d-th digit of many transcendentals in
(essentially) linear time and logarithmic space. So while this is not of fundamentally
lower complexity than the best known algorithms (for say � or log(2)), this makes
such calculations feasible on modest workstations without needing to implement
arbitrary precision arithmetic.

We illustrate this by computing the ten billionth hexadecimal digit of �, the billionth
hexadecimal digits of �2; log(2) and log2(2), and the ten billionth decimal digit of
log(9=10). Details are given in Section 4. A previous result in this same spirit
is the Rabinowitz-Wagon \spigot" algorithm for �. In that scheme, however, the
computation of the digit at position n depends on all digits preceding position n.

We are interested in computing in polynomially logarithmic space and polynomial
time. This class is usually denoted SC (space = logO(1)(d) and time = dO(1) where
d is the place of the \digit" to be computed). Actually we are most interested in
the space we will denote by SC� of polynomially logarithmic space and (almost)

linear time (here we want the time = O(d logO(1)(d))). There is always a possible
ambiguity when computing a digit string base b in distinguishing a sequence of
digits a(b � 1)(b � 1)(b � 1) from (a + 1)000. In this particular case we consider
either representation as an acceptable computation. In practice this problem does
not arise.

It is not known whether division is possible in SC, similarly it is not known whether
base change is possible in SC. The situation is even worse in SC�, where it is not
even known whether multiplication is possible. If two numbers are in SC� (in the

same base) then their product computes in time = O(d2 logO(1)(d)) and is in SC
but not obviously in SC�. The d2 factor here is present because the logarithmic
space requirement precludes the usage of advanced multiplication techniques, such
as those based on FFTs.

We will not dwell on complexity issues except to point out that di�erent algorithms
are needed for di�erent bases (at least given our current ignorance about base
change) and very little closure exists on the class of numbers with d-th digit com-
putable in SC. Various of the complexity related issues are discussed in [6,8,9,11,14].

As we will show in Section 3, the class of numbers we can compute in SC� in base
b includes all numbers of the form

(1:1)
1X
k=1

p(k)

bckq(k)
;

where p and q are polynomials with integer coe�cients and c is a positive integer.
Since addition is possible in SC�, integer linear combinations of such numbers are
also feasible (provided the base is �xed).

2

The algorithm for the binary digits of �, which also shows that � is in SC� in base
2, rests on the following remarkable identity:

Theorem 1. The following identity holds:

(1:2) � =
1X
i=0

1

16i
� 4

8i+ 1
� 2

8i+ 4
� 1

8i+ 5
� 1

8i + 6

�
:

This can also be written as:

(1:3) � =
1X
i=1

pi

16b i8 ci
; [pi] = [4; 0; 0;�2;�1;�1;0; 0]

where the overbar notation indicates that the sequence is periodic.

Proof. This identity is equivalent to:

(1:4) � =

Z 1=
p
2

0

4
p
2� 8x3 � 4

p
2x4 � 8x5

1� x8
dx;

which on substituting y :=
p
2x becomes

� =

Z 1

0

16 y � 16

y4 � 2 y3 + 4 y � 4
dy :

The equivalence of (1.2) and (1.4) is straightforward. It follows from the identity

Z 1=
p
2

0

xk�1

1� x8
dx =

Z 1=
p
2

0

1X
i=0

xk�1+8i dx

=
1
p
2
k

1X
i=0

1

16i(8i+ k)

That the integral (1.4) evaluates to � is an exercise in partial fractions most easily
done in Maple or Mathematica. �

This proof entirely conceals the route to discovery. We found the identity (1.2) by
a combination of inspired guessing and extensive searching using the PSLQ integer
relation algorithm [3,12].

Shortly after the authors originally announced the result (1.2), several colleagues,
including Helaman Ferguson, Tom Hales, Victor Adamchik, Stan Wagon, Donald
Knuth and Robert Harley, pointed out to us other formulas for � of this type. One
intriguing example is

� =
1X
i=0

1

16i
� 2

8i + 1
+

2

4i+ 2
+

1

4i+ 3
� 1=2

4i+ 5
� 1=2

4i + 6
� 1=4

4i+ 7

�
;

3

which can be written more compactly as

� =
1X
i=0

(�1)i
4i

� 2

4i+ 1
+

2

4i + 2
+

1

4i+ 3

�
:

In [2], this and some related identities are derived using Mathematica.

As it turns out, these other formulas for � can all be written as formula (1.2) plus
a rational multiple of the identity

0 =
1X
i=0

1

16i
� �8
8i+ 1

+
8

8i+ 2
+

4

8i+ 3
+

8

8i + 4
+

2

8i+ 5
+

2

8i+ 6
� 1

8i+ 7

�
:

The proof of this identity is similar to that of Theorem 1.

The identities of the next section and Section 5 show that, in base 2, �2, log2(2)
and various other constants, including flog(2); log(3); : : : ; log(22)g are in SC�. (We
don't know however if log(23) is even in SC.)

We will describe the algorithm in the Section 3. Complexity issues are discussed
in [3,5,6,7,8,9,14,19,21] and algorithmic issues in [5,6,7,8,14]. The requisite special
function theory may be found in [1,5,15,16,17,20].

2. Identities.

As usual, we de�ne the m-th polylogarithm Lm by

(2:1) Lm(z) :=
1X
i=1

zi

im
; jzj < 1 :

The most basic identity is

(2:2) � log(1 � 2�n) = L1(1=2
n)

which shows that log(1� 2�n) is in SC� base 2 for integer n. (See also section 5.)

Much less obvious are the identities

(2:3) �2 = 36L2(1=2)� 36L2(1=4)� 12L2(1=8) + 6L2(1=64)

and

(2:4) log2(2) = 4L2(1=2)� 6L2(1=4)� 2L2(1=8) + L2(1=64) :

These can be written as

(2:5) �2 = 36
1X
i=1

ai
2ii2

; [ai] = [1;�3;�2;�3; 1;0]

4

(2:6): log2(2) = 2
1X
i=1

bi
2ii2

; [bi] = [2;�10;�7;�10; 2;�1] :

Here the overline notation indicates that the sequences repeat. Thus we see that
�2 and log2(2) are in SC� in base 2. These two formulas can alternately be written

�2 =
9

8

1X
i=0

1

64i
� 16

(6i+ 1)2
� 24

(6i+ 2)2
� 8

(6i+ 3)2
� 6

(6i + 4)2
+

1

(6i + 5)2
�

log2(2) =
1

8

1X
i=0

1

64i
� �16
(6i)2

+
16

(6i + 1)2
� 40

(6i + 2)2
� 14

(6i+ 3)2
� 10

(6i+ 4)2
+

1

(6i + 5)2
�
:

Identities (2.3)-(2-6) are examples of polylogarithmic ladders in the base 1=2 in
the sense of [16]. As with (1.2) we found them by searching for identities of this
type using an integer relation algorithm. We have not found them directly in print.
However (2.5) follows from equation (4.70) of [15] with � = �=3; � = �=2 and =
�=3. Identity (2.6) now follows from the well known identity

(2:7) 12L2(1=2) = �2 � 6 log2(2) :

A distinct but similar formula that we have found for �2 is

�2 =
1X
i=0

1

16i
� 16

(8i + 1)2
� 16

(8i+ 2)2
� 8

(8i + 3)2
� 16

(8i + 4)2
� 4

(8i + 5)2
� 4

(8i+ 6)2
+

2

(8i + 7)2
�
;

which can be derived from the methods of section 1.

There are several ladder identities involving L3:

(2:8) 35=2�(3)� �2 log(2) = 36L3(1=2)� 18L3(1=4)� 4L3(1=8) + L3(1=64) ;

(2:9) 2 log3(2)� 7�(3) = �24L3(1=2) + 18L3(1=4) + 4L3(1=8)� L3(1=64) ;

(2:10) 10 log3(2)�2�2 log(2) = �48L3(1=2)+54L3(1=4)+12L3(1=8)�3L3(1=64) :

The favored algorithms for � of the last centuries involved some variant of Machin's
1706 formula:

(2:11)
�

4
= 4 arctan

1

5
� arctan

1

239
:

There are many related formula [15,16,17,20] but to be useful to us all the arguments
of the arctans have to be a power of a common base, and we have not discovered
any such formula for � . One can however write

(2:12)
�

2
= 2 arctan

1p
2
+ arctan

1p
8

5

This can be written as

(2:13)
p
2� = 4f(1=2) + f(1=8) where f(x) :=

1X
i=1

(�1)ixi
2i+ 1

and allows for the calculation of
p
2� in SC�.

Another two identities involving Catalan's constant G, � and log(2) are:

(2:14) G� � log(2)

8
=

1X
i=1

ci

2b
i+1
2
ci2

; [ci] = [1; 1; 1; 0;�1;�1;�1; 0]

and

(2:15)
5

96
�2 � log2(2)

8
=

1X
i=1

di

2b
i+1
2
ci2

; [di] = [1; 0;�1;�1;�1; 0;1;1]

These may be found in [17 p. 105, p. 151]. Thus 8G � � log(2) is also in SC� in
base 2, but it is open and interesting as to whether G is itself in SC� in base 2.

A family of base 2 ladder identities exist:

(2:16)
Lm(1=64)

6m�1
� Lm(1=8)

3m�1
� 2 Lm(1=4)

2m�1
+

4 Lm(1=2)

9
� 5 (� log(2))m

9m!

+
�2 (� log(2))m�2

54 (m � 2)!
� �4 (� log(2))m�4

486 (m � 4)!
� 403 �(5) (� log(2))m�5

1296 (m� 5)!
= 0:

The above identity holds for 1 � m � 5; when the arguments to factorials are
negative they are taken to be in�nite so the corresponding terms disappear. See
[16, p. 45].

As in the case of formula (1.2) for �, colleagues of the authors have subsequently
pointed out several other formulas of this type for various constants. Three exam-
ples reported by Knuth, which are based on formulas in [13, p. 17, 18, 22, 47, 139],
are

p
2 ln(1 +

p
2) =

1X
i=0

1

16i
� 1

8i+ 1
+

1=2

8i+ 3
+

1=4

8i + 5
+

1=8

8i+ 7

�

p
2 arctan(1=

p
2) =

1X
i=0

1

16i
� 1

8i + 1
� 1=2

8i + 3
+

1=4

8i+ 5
� 1=8

8i+ 7

�

arctan(1=3) =
1X
i=0

1

16i
� 1

8i+ 1
� 1

8i+ 2
� 1=2

8i + 4
� 1=4

8i+ 5

�

Thus these constants are also in class SC�. Some other examples can be found in
[18].

6

3. The Algorithm.

Our algorithm to compute individual base-b digits of certain constants is based on
the binary scheme for exponentiation, wherein one evaluates xn rapidly by succes-
sive squaring and multiplication. This reduces the number of multiplications to
less than 2 log2(n). According to Knuth [14], where details are given, this trick
goes back at least to 200 B.C. In our application, we need to perform exponentia-
tion modulo a positive integer c, but the overall scheme is the same | one merely
performs all operations modulo c. An e�cient formulation of this algorithm is as
follows.

To compute r = bn mod c, �rst set t to be the largest power of two � n, and set
r = 1. Then

A: if n � t then r br mod c; n n� t; endif

t t=2

if t � 1 then r r2 mod c; go to A; endif

Here and in what follows, \mod" is used in the binary operator sense, namely as the
binary function de�ned by x mod y := x� [x=y]y. Note that the above algorithm
is entirely performed with positive integers that do not exceed c2 in size. Thus it
can be correctly performed, without round-o� error, provided a numeric precision
of at least 1 + 2 log2 c bits is used.

Consider now a constant de�ned by a series of the form

S =
1X
k=0

1

bckp(k)
;

where b and c are positive integers and p(k) is a polynomial with integer coe�cients.
First observe that the digits in the base b expansion of S beginning at position n+1
can be obtained from the fractional part of bnS. Thus we can write

(3:4) bnS mod 1 =
1X
k=0

bn�ck

p(k)
mod 1

=

bn=ccX
k=0

bn�ck mod p(k)

p(k)
mod 1 +

1X
k=bn=cc+1

bn�ck

p(k)
mod 1

For each term of the �rst summation, the binary exponentiation scheme is used
to evaluate the numerator. Then oating-point arithmetic is used to perform the
division and add the result to the sum mod 1. The second summation, where
the exponent of b is negative, may be evaluated as written using oating-point
arithmetic. It is only necessary to compute a few terms of this second summation,
just enough to insure that the remaining terms sum to less than the \epsilon" of
the oating-point arithmetic being used. The �nal result, a fraction between 0 and
1, is then converted to the desired base b.

7

Since oating-point arithmetic is used here in divisions and in addition modulo 1,
the result is of course subject to round-o� error. If the oating-point arithmetic
system being used has the property that the result of each individual oating-point
operation is in error by at most one bit (as in systems implementing the IEEE
arithmetic standard), then no more than log2(2n) bits of the �nal result will be
corrupted. This is actually a generous estimate, since it does not assume any
cancelation of errors, which would yield a lower estimate. In any event, it is clear
that ordinary IEEE 64-bit arithmetic is su�cient to obtain a numerically signi�cant
result for even a large computation, and \quad precision" (i.e. 128-bit) arithmetic,
if available, can insure that the �nal result is accurate to several digits beyond
the one desired. One can check the signi�cance of a computed result beginning
at position n by also performing a computation at position n + 1 or n � 1 and
comparing the trailing digits produced.

The most basic interesting constant whose digits can be computed using this scheme
is

log(2) =
1X
k=1

1

k2k

in base 2. Using this scheme to compute hexademical digits of � from identity (1.2)
is only marginally more complicated, since one can rewrite formula (1.2) using four
sums of the required form. Details are given in the next section. In both cases, in
order to compute the n-th binary digit (or a �xed number of binary digits at the
n-th place) we must sum O(n) terms of the series. Each term requires O(log(n))
arithmetic operations and the required precision is O(log(n)) digits. This gives
a total bit complexity of O(n log(n)M (log(n))) where M (j) is the complexity of
multiplying j bit integers. So even with ordinary multiplication the bit complexity
is O(n log3(n)).

This algorithm is, by a factor of log(log(log(n))), asymptotically slower than the
fastest known algorithms for generating the n-th digit by generating all of the �rst
n digits of log(2) or � [7]. The asymptotically fastest algorithms for all the �rst
n digits known requires a Strassen-Sch�onhage multiplication [19]; the algorithms
actually employed use an FFT based multiplication and are marginally slower than
our algorithm, from a complexity point of view, for computing just the n-th digit. Of
course this complexity analysis is totally misleading: the strength of our algorithm
rests mostly on its easy implementation in standard precision without requiring
FFT methods to accelerate the computation.

It is clear that the above methods can easily be extended to evaluate digits of
contstants de�ned by a formula of the form

S =
1X
k=0

p(k)

bckq(k)
;

where p and q are polynomials with integer coe�cients and c is a positive integer.
Similarly if p and q are slowly growing analytic functions of various types the
method extends.

8

4. Computations.

We report here computations of �; log(2); log2(2); �2 and log(9=10), based on
the formulas (1.1), (2.2), (2.5), (2.6) and the identity log(9=10) = �L1(1=10),
respectively.

Each of our computations employed quad precision oating-point arithmetic for
division and sum mod 1 operations. Quad precision is supported from Fortran on
the IBM RS6000/590 and the SGI Power Challenge (R8000), which were employed
by the authors in these computations. We were able to avoid the usage of explicit
quad precision in the exponentiation scheme by exploiting a hardware feature com-
mon to these two systems, namely the 106-bit internal registers in the multiply-add
operation. This saved considerable time, because quad precision operations are
signi�cantly more expensive than 64-bit operations.

Computation of �2 and log2(2) presented a special challenge, because one must
perform the exponentiation algorithmmodulo k2 instead of k. When n is larger than
only 213, some terms of the series (2.5) and (2.6) must be computed with a modulus
k2 that is greater than 226. Squares that appear in the exponentiation algorithmwill
then exceed 252, which is the nearly the maximumprecision of IEEE 64-bit oating-
point numbers. When n is larger than 226, then squares in the exponentiation
algorithm will exceed 2104, which is nearly the limit of quad precision.

This di�culty can be remedied using a method which has been employed for ex-
ample in searches for Wieferich primes [10]. Represent the running value r in the
exponentiation algorithm by the ordered pair (r1; r2), where r = r1 + kr2, and
where r1 and r2 are positive integers less than k. Then one can write

r2 = (r1 + kr2)
2 = r21 + 2r1r2k + r22k

2

When this is reduced mod k2, the last term disappears. The remaining expression is
of the required ordered pair form, provided that r21 is �rst reduced mod k, the carry
from this reduction is added to 2r1r2, and this sum is also reduced mod k. Note
that this scheme can be implemented with integers of size not exceeding 2k2. Since
the computation of r2 mod k2 is the key operation of the binary exponentiation
algorithm, this means that ordinary IEEE 64-bit oating-point arithmetic can be
used to compute the n-th hexadecimal digit of �2 or log2(2) for n up to about
224. For larger n, we still used this basic scheme, but we employed the multiply-
add \trick" mentioned above to avoid the need for explicit quad precision in this
section of code.

Our results are given below. The �rst entry, for example, gives the 106-th through
106+13-th hexadecimal digits of � after the \decimal" point. In all cases we did the
calculations twice | the second calculation was similar to the �rst, except shifted
back one position. Since this changes all the arithmetic performed, it is a highly
rigorous validity check. Thus we believe that all the digits shown below are correct.

9

Constant: Base: Position: Digits from Position:

� 16 106 26C65E52CB4593

107 17AF5863EFED8D

108 ECB840E21926EC

109 85895585A0428B

1010 921C73C6838FB2

log(2) 16 106 418489A9406EC9

107 815F479E2B9102

108 E648F40940E13E

109 B1EEF1252297EC

�2 16 106 685554E1228505

107 9862837AD8AABF

108 4861AAF8F861BE

109 437A2BA4A13591

log2(2) 16 106 2EC7EDB82B2DF7

107 33374B47882B32

108 3F55150F1AB3DC

109 8BA7C885CEFCE8

log(9=10) 10 106 80174212190900

107 21093001236414

108 01309302330968

109 44066397959215

1010 82528693381274

These computations were done at NASA Ames Research Center, using workstation
cycles that otherwise would have been idle.

5. Logs in base 2.

It is easy to compute, in base 2, the d-th binary digit of

(5:1) log(1� 2�n) = L1(1=2
n) :

So it is easy to compute log(m) for any integer m that can be written as

(5:2) m :=
(2a1 � 1)(2a2 � 1) � � � (2ah � 1)

(2b1 � 1)(2b2 � 1) � � � (2bj � 1)
:

In particular the n-th cyclotomic polynomial evaluated at 2 is so computable. A
check shows that all primes less than 19 are of this form. The beginning of this list
is:

f2; 3; 5; 7;11;13;17;31;43;57;73;127; 151;205;257g :

10

Since
218 � 1 = 7 � 9 � 19 � 73;

and since 7;
p
9 and 73 are all on the above list we can compute log(19) in SC�

from
log(19) = log(218 � 1)� log(7) � log(9)� log(73):

Note that 211� 1 = 23 � 89 so either both log(23) and log(89) are in SC� or neither
is.

We would like to thank Carl Pomerance for showing that an identity of type (5.2)
does not exist for 23. This is a consequence of the fact that each cyclotomic poly-
nomial evaluated at two has a new distinct prime factor. We would also like to
thank Robert Harley for pointing out that 29 and 37 are in SC� in base 2 via
consideration of the Aurefeuillian factors 22n�1 + 2n + 1 and 22n�1 � 2n + 1.

6. Relation Bounds.

One of the �rst questions that arises in the wake of the above study is whether there
exists a scheme of this type to compute decimal digits of �. At present we know
of no identity like (1.2) in base 10. The chances that there is such an identity are
dimmed by some numerical results that we have obtained using the PSLQ integer
relation algorithm [3, 12]. These computations establish (with the usual provisos
of computer \proofs") that there are no identities (except for the case n = 16) of
the form

� =
a1
a0

+
1

a0

1X
k=0

1

nk

�
a2

mk + 1
+

a3
mk + 2

+ � � �+ am+1

mk +m

�
;

where n ranges from 2 to 128, where m ranges from 1 to min(n; 32), and where
the Euclidean norm of the integer vector (a0; a1; � � � ; am+1) is 1012 or less. These
results of course do not have any bearing on the possibility that there is a formula
not of this form which permits computation of � in some non-binary base.

In fact, J. P. Buhler has reported a proof that any identity for � of the above form

must have n = 2K or n =
p
2
K
. This also does not exclude more complicated

formulae for the computation of � base 10.

7. Questions.

As mentioned in the previous section, we cannot at present compute decimal digits
of � by our methods because we know of no identity like (1.2) in base 10. But it
seems unlikely that it is fundamentally impossible to do so. This raises the following
obvious problem:

1] Find an algorithm for the n-th decimal digit of � in SC�. It is not even clear
that � is in SC in base 10 but it ought to be possible to show this.

2] Show that � is in SC in all bases.

3] Are e and
p
2 in SC (SC�) in any base?

11

Similarly the treatment of log is incomplete:

4] Is log(2) in SC� in base 10?

5] Is log(23) in SC� in base 2?

8. Acknowledgments.

The authors wish to acknowledge the following for their helpful comments: V.
Adamchik, J. Borwein, J. Buhler, R. Crandall, H. Ferguson, T. Hales, R. Harley,
D. Knuth, C. Pomerance and S. Wagon.

12

References

1. M. Abramowitz & I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, NY,
1965.

2. V. Adamchik & S. Wagon, Pi: A 2000-year search changes direction (preprint).

3. A. V. Aho, J.E. Hopcroft, & J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

4. D. H. Bailey, J. Borwein and R. Girgensohn, Experimental evaluation of Euler sums, Exper-
imental Mathematics 3 (1994), 17{30.

5. J. Borwein, & P Borwein, Pi and the AGM { A Study in Analytic Number Theory and
Computational Complexity, Wiley, New York, NY, 1987.

6. J. Borwein & P. Borwein, On the complexity of familiar functions and numbers, SIAM Review
30 (1988), 589{601.

7. J. Borwein, P. Borwein & D. H. Bailey, Ramanujan, modular equations and approximations
to pi, Amer. Math. Monthly 96 (1989), 201{219.

8. R. Brent, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput. Mach.
21 (1974), 201{206.

9. S. Cook, A taxonomy of problems with fast parallel algorithms, Information and Control 64
(1985), 2{22.

10. R. Crandall, K. Dilcher, and C. Pomerance, A search for Wieferich and Wilson primes
(preprint).

11. R. Crandall and J. Buhler, On the evaluation of Euler sums, Experimental Mathematics 3,
(1995), 275{285.

12. H. R. P. Ferguson & D. H. Bailey, Analysis of PSLQ, an integer relation algorithm (preprint).

13. E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cli�s, NJ, 1975.

14. D. E. Knuth,The Art of Computer Programming. Vol. 2: Seminumerical Algorithms, Addison-
Wesley, Reading, MA, 1981.

15. L. Lewin, Polylogarithms and Associated Functions, North Holland, New York, 1981.

16. L. Lewin, Structural Properties of Polylogarithms, Amer. Math. Soc., RI., 1991.

17. N. Nielsen, Der Eulersche Dilogarithmus, Halle, Leipzig, 1909.

18. S. D. Rabinowitz and S. Wagon, A spigot algorithm for pi, Amer. Math. Monthly 103 (1995),
195-203.

19. A. Sch�onhage, Asymptotically fast algorithms for the numerical multiplication and division
of polynomials with complex coe�cients, in: EUROCAM (1982) Marseille, Springer Lecture
Notes in Computer Science, vol. 144, 1982, pp. 3{15.

20. J. Todd, A problem on arc tangent relations, MAA Monthly 56 (1940), 517{528.

21. H. S. Wilf, Algorithms and Complexity, Prentice Hall, Englewood Cli�s, NJ, 1986.

13

Bailey: NASA Ames Research Center, Mail Stop T27A-1, Moffett Field, CA, USA

94035-1000 dbailey@nas.nasa.gov

Borwein: Department of Mathematics and Statistics, Simon Fraser University, Burn-

aby, B.C., Canada V5A 1S6 pborwein@cecm.sfu.ca

Plouffe: Department of Mathematics and Statistics, Simon Fraser University, Burn-

aby, B.C., Canada V5A 1S6 plouffe@cecm.sfu.ca

14

